
1

Building accessible web applications
Rachele DiTullio, Senior Accessibility Engineer, Citizens

2

Rachele DiTullio (she/they)

• Web developer for many years
• Graduate school for Information

Studies (UXD)
• Learned accessibility and became

a Certified Professional in Web
Accessibility (CPWA)

• Progressed from software
engineering to accessibility
engineering in 2021

33

Agenda

Web accessibility

Best practices

Testing for accessibility

44

Web accessibility

55

“The power of the Web is in its universality.

Access by everyone regardless of disability is

an essential aspect.”

—Tim Berners Lee
W3C Director and inventor of the World Wide Web

66

What is web accessibility?

Web accessibility is the extent to which a website or
web application can be used by disabled people.

MoreLess

77

Accessibility is not a technical problem to be solved

It’s a human one.
• We must understand the ways disabled people access and use

digital information.

• Disabled people will try to use your application.

• Who are you willing to exclude?

88

Accessibility must be baked in

99

Semantic Markup

Native HTML elements first

…then ARIA.

1010

The first rule of ARIA

Don’t use ARIA.

1111

ARIA: Less good example

<div id="my-button">Search</div>

• Must have the correct role: add role="button"
• Must be keyboard focusable: add tabindex="0"
• Must work with ENTER and SPACE: add JavaScript

OR use a <button> and get built-in functionality

1212

Best practices

1313

Shift left

• Start thinking about accessibility during project planning
• Decide what standards you are conforming to
• Industry standard is now WCAG 2.2 AA (55 success criteria)
• To get rid of issues, don’t create them in the first place

For every hour that a UX Designer invests into accessibility
pre-launch, we save up to 4 hours in Engineering post-
launch not fixing accessibility issues.

—Dirk Ginader, Accessibility Engineering Lead at Google

https://www.w3.org/WAI/WCAG22/quickref/?currentsidebar=%23col_customize&levels=aaa

1414

Design systems can help

• Give your developers accessible
components and accessibility
guidance.

• It’s still possible to use design
systems components in inaccessible
ways.
– Controls missing accessible names
– Controls with incorrect accessible

names
– Color contrast issues
– Managing focus order

1515

You’re responsible for all 3rd party code in your application

This includes:

- Frameworks
- Libraries
- Packages
- Design systems
- CAPTCHAs
- Maps
- Videos
- iframes
- Code/content from somewhere else

1616

If you can do only one thing for accessibility…

Make your application
work with a keyboard.

1717

All interactive elements get keyboard focus

• Only interactive elements get keyboard focus; disabled controls are removed
from the focus order

• Buttons activate with SPACE and ENTER keys; Links activate with ENTER
• Scrolling the window with ARROW keys
• Scrolling containers get keyboard focus and scroll with ARROW keys
• Radio buttons and tabs are selected with ARROW keys
• Dialogs and expanded controls close with ESC
• No keyboard traps
• No single print character key shortcuts
• Controls activated with gestures provide button alternatives, e.g. panning a

map in four different directions, drag and drop

1818

Focus order is logical and focus indication is visible

• Users can TAB through all
interactive elements in an order
that makes sense: left to right, top
to bottom

• Visibly indicate where the current
keyboard focus is; do not set CSS
outline:0 on controls

• Default browser focus indicators
pass; Custom focus indicators must
have 3:1 contrast with background

• Manage focus for dialogs, loading
new content, form errors

1919

Manage focus in single page applications (SPAs)

• Focus must be deliberately and
consistently placed at the
o top of new page content or
o top of the HTML page

• Pick one or the other
and consistently follow that pattern

• DO NOT place focus on the first
input on page load

• To determine where current focus
is, use the
document.activeElement
command in the browser console

2020

• All interactive elements (links, buttons,
form controls), repeated landmarks and
elements with ARIA roles need an
accessible name

• Screen reader users hear/read the
accessible name of all controls; No
name: unlabeled button

• Speech input users rely on the
accessible name matching the visible
label to operate a control

• Use aria-label for icon-only controls;
don’t include the role

Controls have accessible names

2121

Controls have appropriate roles

• Screen readers will automatically
announce the role

• Don’t include the role in the
accessible name

• It’s possible to change the role of
any element with the role
attribute—be careful!

• Interactive elements must have a
defined role

• Only elements with a defined role
can use aria-label and aria-
labelledby attributes

2222

Each page (URL) has a unique page title

• Every time the URL changes, the
page title needs to update

• Page titles notify screen reader
users that the content has changed

• Page titles need to be unique within
a set of webpages

• When managing state in a single
page application with multiple page
titles, use a live region to announce
the page title

• Debug live regions with NerdeRegion

https://chromewebstore.google.com/detail/nerderegion/lkcampbojgmgobcfinlkgkodlnlpjieb

2323

Set the language of every page

• Enables screen readers to announce
the content in appropriate language
and accent

• Use the lang attribute in the
<html> element to set the page
language, e.g. <html lang="en">

• Apply the lang attribute to
elements where content is in a
language other than the language
set at the page level,
e.g. <p lang="es">Hola</p>

2424

Provide a skip link for keyboard navigation

• A skip link is the first focusable
element on a page

• Primarily used by keyboard-only
users to skip the navigation instead
of tabbing through multiple links

• Skip links can be visually hidden
until they have keyboard focus

• The target of a skip link is usually
the <main> landmark

• You may need to implement other
skip links in the UI to bypass
repeated interactive elements

2525

Use landmarks to help screen readers navigate

• If you use landmarks, all content
should be contained a landmark

• Use only one <header>, one
<main>, and one <footer>

• The main content of the page
should be contained in <main>; this
landmark is usually the target of a
skip link

• When you have multiple landmarks
of the same type, e.g. <nav>, use
aria-label to set them apart

2626

Use semantic markup

• Text that acts as a visual heading
must be marked up as a heading
(<h1>–<h6> elements)

• Buttons do something, e.g. open a
dialog, submit a form

• Links take you to a new page
• Use lists when content is visually

presented as a list
• Tabular data is contained in tables
• Use landmarks sparingly
• Group related form fields

2727

Adaptive layouts support reflow and resizing of text

• Layouts must work at a minimum of
320x256px without scrolling in two
dimensions (test on desktop with
1280x1024px zoomed to 400%)

• Users must be able to zoom to 200%
without loss of content or two-
dimensional scrolling (test at
1024x768px zoomed to 200%)

• All content must be visible and
available to all users at all screen
sizes. Don’t elide important info…

• Support both orientations

2828

Dynamic status messages are conveyed to assistive technology

• Any text that appears
dynamically must be announced
using a live region
o Page loading
o Snackbar messages
o Toast messages
o Banner notifications
o No search results
o Inline form error messages

• Live region is empty on page load
• Do not move focus to status

messages

2929

Audio and video content is accessible

• Video player supports captions for
all spoken words and sounds

• Video player supports audio
description (AD) for all on-screen
text and actions

• Provide a transcript with
timestamps and identify speakers

• Avoid auto-playing audio and video
• Provide a mechanism to stop any

content that lasts longer than 5 sec.
• Provide an audio volume control
• Avoid flashing content

3030

Text and UI elements have good contrast

• All regular sized text (below 18.5px)
must have 4.5:1 contrast with the
background

• Large/bold text must have at least
3:1 contrast with the background

• Custom focus indicators and must
have at least 3:1 contrast with the
background

• UI elements like control borders and
icons should have 3:1 contrast

• Logos are exempt
• Disabled controls are exempt

3131

Don’t rely on color or sensory characteristics to convey meaning

• Avoid color alone to distinguish a
link from surrounding text, e.g.
underline links, 3:1 contrast, icons

• Don’t rely solely on sensory
characteristics such as shape, color,
size, visual location, orientation, or
sound in instructions

• In charts and graphs, use a method
other than color to distinguish
between data sets such as shapes
and patterns for people who are
colorblind or have low vision

3232

Hide decorative images and icons (including <svg> elements)

• Icons and other UI images are
generally decorative and should be
hidden from assistive technology

• Use the aria-hidden="true"
attribute to hide anything from
assistive technology

• Decorative inline images should
have an empty alt attribute, e.g.

• Avoid images of text when the
content can be presented as HTML

3333

Provide more than one way to find pages

• Use two or more of the following for
all pages in the site (even SPAs):

o Global navigation
o Site map
o Site search
o In-page links

3434

Forms

• Mark all required fields both visually
and programmatically

• Programmatically link labels with
their form fields using the for
attribute on the <label>

• Use the autocomplete attribute
• Provide error messages next to fields

in error
• Don’t use color alone to convey a

field is in error state; include an icon
• Error messages must indicate how to

enter the required data format

3636

Testing for accessibility

3737

Automated accessibility testing

• Use accessibility linters

• Check pages using browser-based
automated tools
– axe DevTools
– ARC Toolkit
– Accessibility Insights

• Automated tools can only catch
about 30% of possible
accessibility issues

https://www.deque.com/axe/devtools/
https://www.tpgi.com/arc-platform/arc-toolkit/
https://accessibilityinsights.io/

3838

Guided accessibility testing

ANDI bookmarklet

https://www.ssa.gov/accessibility/andi/help/install.html

3939

• Test with a screen reader
– Windows: JAWS and Chrome
– Windows: NVDA and Chrome/Firefox
– Mac: VoiceOver and Safari

• Use 3rd party accessibility
consultants if you need a VPAT or
Accessibility Conformance Report
(ACR)

• Do usability testing with disabled
people

- Accessibility Bookmarklets
- Landmarks
- Focus
- ARIA, etc.

- A11y Tools
- Colour Contrast Checker
- Window Resizer
- Trigger Character Key Shortcuts
- Text Spacing
- Autocomplete
- Target size

Manual accessibility testing

https://www.pauljadam.com/bookmarklets/
https://a11y-tools.com/bookmarklets/
https://chrome.google.com/webstore/detail/colour-contrast-checker/nmmjeclfkgjdomacpcflgdkgpphpmnfe?hl=en-GB
https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh/
http://3needs.org/en/testing/code/kb-shortcuts.html
https://codepen.io/stevef/details/YLMqbo
https://racheleditullio.com/blog/2023/11/autocomplete-accessibility-bookmarklet/
https://html5accessibility.com/stuff/2023/08/28/quick-and-very-dirty-target-size-checker/

4040

Thank you

Rachele DiTullio,
Senior Accessibility Engineer, Citizens

Email: rachele.ditullio@protonmail.com
LinkedIn:
https://www.linkedin.com/in/racheleditullio/
Twitter: @RacheleDiTullio
Mastodon: @racheled@mastodon.social

Slides: https://racheleditullio.com/

mailto:rachele.ditullio@protonmail.com
https://www.linkedin.com/in/racheleditullio/
https://racheleditullio.com/

	Building accessible web applications
	Rachele DiTullio (she/they)
	Agenda
	Web accessibility
	Quote
	What is web accessibility?
	Accessibility is not a technical problem to be solved
	Accessibility must be baked in
	Semantic Markup
	The first rule of ARIA
	ARIA: Less good example
	Best practices
	Shift left
	Design systems can help
	You’re responsible for all 3rd party code in your application
	If you can do only one thing for accessibility…
	All interactive elements get keyboard focus
	Focus order is logical and focus indication is visible
	Manage focus in single page applications (SPAs)
	Controls have accessible names
	Controls have appropriate roles
	Each page (URL) has a unique page title
	Set the language of every page
	Provide a skip link for keyboard navigation
	Use landmarks to help screen readers navigate
	Use semantic markup
	Adaptive layouts support reflow and resizing of text
	Dynamic status messages are conveyed to assistive technology
	Audio and video content is accessible
	Text and UI elements have good contrast
	Don’t rely on color or sensory characteristics to convey meaning
	Hide decorative images and icons (including <svg> elements)
	Provide more than one way to find pages
	Forms
	Testing for accessibility
	Automated accessibility testing
	Guided accessibility testing
	Manual accessibility testing
	Thank you

